

Carbon stock in biomass in different land use systems on tropical peat in Jambi, Sumatra

Sebastian Persch & Setiari Marwanto

29 September 2011 – REDD-ALERT annual meeting, Da Lat, Vietnam

THINKING beyond the canopy

Deep peat site

Virgin peat swamp forest

Shallow peat site

Secondary Logged forest

Burnt forest

Above ground biomass

Forest treatments

Chave et al. (2005)

 $\mathsf{AGB} = \rho^* \exp[-1.499 + 2.148^* \ln(\mathsf{DBH}) + 0.207^* (\ln(\mathsf{DBH})^2) - 0.0281^* (\ln(\mathsf{DBH})^3)]$

• Oil palm treatments

Dewi et al. (2010)

AGB = 0.0976*(Height)+0.0706

- Coarse Root Biomass
- Forest treatments
 - Coarse root sampling (> 2mm)
 - 27 randomized sample points in 1ha
 - At each point excavation (20cm x 20cm x 100cm)
 - Subsamples each 10cm depth

- Coarse Root Biomass
- Forest treatments
 - "Tap root" sampling
 - Dominant species selected per treatment
 - Excavating and measuring root systems
 - Development of allometric equations to estimate tap root biomass
 - For trees with DBH > DBH range of allometry, root:shoot ratio calculated

- Coarse Root Biomass
- Oil palm treatments
 - 3 randomly selected palms
 - Trench sampling (10cm x 300 cm x 50cm)
 - Subsamples each 10cm depth
 - Modeling of root biomass distribution
 - Excavation of dead root systems

Above Ground C stocks in trees

THINKING beyond the canopy

Coarse Root C stocks without "tap roots"

Coarse Root C stocks underneath the trunk ("tap roots")

Allometric equation	R ²	n	RSE
DW=exp(-5.95145+4.9996*logDBH-0.76694*(logDBH^2))	0.50733	18	0.1634

Total Coarse Root C Stock

Total C Stock in Biomass of the tress

Discussion & Conclusion

- ≠ LF treatments (187 Mg C ha⁻¹ on deep peat site, 103 Mg C ha⁻¹ on shallow peat site): ≠ logging intensity
- ✓ OP treatments (25 Mg C ha⁻¹ on deep peat site, 32 Mg C ha⁻¹ on shallow peat site): ≠ in plot history, water table fluctuation, occurrence of termites and *sufetula* spp.
- AGB C stocks in trees in the range of values found in the literature
- 1st study assessing C stocks in coarse roots of ecosystems on peat
- Total C loss from peat swamp forest conversion into OP very large: 304 Mg C ha⁻¹

Thank you Terima kasih

www.cifor.cgiar.org

CIFOR advances human well-being, environmental conservation, and equity by conducting research to inform policies and practices that affect forests in developing countries.

THINKING beyond the canopy